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805 MHz multi cell cavity in 4.5 T solenoid

• We know a focus dark current can damage a 10 mill Ti window

• And, under some fields, there can be no effect on max gradient

• This field asymmetric & did not link high gradient to high gradient

• Maximum gradient ≈ 50 MV/m βFN ≈ 180
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805 MHz Pillbox cavity in 4.5 T solenoid

• We know, with field lines joining iris to iris, gradient are reduced

• Since there was no reduction with a different field geometry:
this effect must be a function of the geometry
NOT a local effect at an emitter
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805 MHz button experiment

• Focused beams from an undamaged Be window can make visible damage on
a Cu plate

• And this occurs opposite a maximum gradient on the Be
NOT a maximum gradient on the Cu
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201 MHz near 4.5 T solenoid
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• Without magnetic field, initial gradients (≥21 MV/m)
Consistent with 805 data scaled ∝

√
f : βFN 183 → 366

• With magnetic field, E ≈ 10 MV/m: down another factor of 2

• Without field, after runs with B, max grad E ≈ 15 MV/m
(conditioned up to 18 MV/m)

• Presumably, runs with B raised βFN 366 → 600
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Fracture Model
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Proposed mechanism in magnetic fields

1. ”Dark Current” electrons accelerated and focused by magnetic field

2. Beamlet radius from space charge and focus: ∝ Ij/B

3. Fraction of energy deposited in diffusion length = Q

4. Calculate B that will melt on arrival

5. If on a location with high surface rf gradient: breakdown

6. If not, no breakdown, but damage

B ∝
√√√√√√√

1

I (1−2j) Ee



δ ρ Cs Tm
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Fit to early pillbox data and prediction for 201 MHz
This is for symmetric cases
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• Assumed βFN =180 for 805 MHz

• Fit gave j = 0.35

• Assumed βFN =360 for 201 MHz
i.e. assume same local field of 7 GV/m
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Simulation of current 201 MHz MTA exp
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• Field lines do not link high gradient locations

• Fields very low: 0.3 T at center (0.15 to 0.65 T)

• Damage likely only on high field (right) side

• On Be window, from left iris or other window, or

• On right iris from returning electrons
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Trajectories vs. phase
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• Program now allows for
angle of incidence

• Range energy of elec-
trons corrected

• CAVEL study at
Bo=4.5 T & E =10
MV/m

• Scaling to other gradi-
ents

• Relevant magnetic field
is now the maximum
along z, where the elec-
trons hit a surface

10



Scaling from 201 MHz
βFN = 183 ×
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• Used βFN ∝ 1/
√

f consistent with initial B=0 E =21 MV/m

• Does not explain data at 201 MHz with B

• But after running with 201 only E = 15 MV/m at B=0

• So damage had increased βFN by 21/15
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With increased βFN from damage
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• Models now agrees with data within plausible errors

• Problem could be either

– Returning electrons from an iris, or

– Electrons from iris or window damaging the Be
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Relevance to MICE
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• Fields are NOT strongly diver-
gent as in MTA

• Maximum gradients without
damage from slide 8
At B≈ 2 T: E ≈ 7 MV/m

• But with damage as in MTA:
E ≈ 5 MV/m

• Possible saftey problem:
beamlets passing through Be
windows damage Al hydrogen
saftey window

• Problem relieved if coupling coil
sign reversed

• But beamlet at exactly r=0 may
be a problem
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Can one find lattice solutions with reversal?
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• Yes, but momentum acceptance
somewaht reduced

• Note: lattice studied here is a
continuous one, as used to define
MICE in the first place. If this so-
lution were chosen, the matching
would have to be modified.
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Conclusion

• Without magnetic field, melting model favored of fracture

• With magnetic field, damage by focused dark current can fit 805
MHz data

• 201 MHz without magnetic field E=21 MV/m
consitent with βFN ∝ 1/

√
f

• But with this beta the model does not fit data with magnetic
fields

• If lower maximum gradient at B=0, after running with field, in-
terpreted as increase in βFN then reasonable agreement with
finite B data is found
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Appendix: Fields vs z
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Appendix : Energy of electrons
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Appendix 2: Range vs Energy

Energy Cu range Be range
MeV mm mm
.13 .02 .07
0.25 0.05 .2
.5 0.19 .76
1 0.44 1.76
4 2.2 8.8

Thermal diffusion depth
τ201 = 200µ sec τ805 = 25 µ sec

δ =

√√√√√√√
2kτ

Cv
=

√√√√√√
2 4.01 τ

3.45

= 0.2 (mm) for 201 MHz

= 0.07 (mm) for 805 MHz

So ≈ .5 (.2) MeV bad at 201 MHz for Cu (Be)
So ≈ .3 (.13) MeV bad at 805 MHz for Cu (Be)

Be is better than Cu because the electrons go deep & dE/dx is less
This needs a real simulation, the above is only a qualitative argument
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Pulse length dependence
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• more energy available with longer pulses

• do more damage on breakdown

• increasing βFN
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Material Dependence
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• if less energy needed to melt

• more will be melted at breakdown

• doing more damage

• increasing βFN
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Twist model with external magnetic fields

F ∝ I × B

I ∝ E10

Ebreakdown ∝ B−1/10
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Thermal Runaway
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Returning electron model (Wilson)
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How to study at 805 MHz: MTA with Lab G magnet
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How to study at 201 MHz: MTA with coupling coil
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• Field lines do not link high
gradient locations

• But fields now much
higher: 1.6 T vs 0.3 T for
Lab G magnet
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MTA with both
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•Now geometry similar to
MICE: field lines link irises

• Fields at irises around 1.5
T at full current: similsr to
MICE

• But excessive forces on
coils

• But if 1/10th current:

– Forces 1/100

– Fields still 0.15 T

– Where current experi-
ment shows 1/2 gradient
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